Alexander Vitkovski (alev_biz) wrote,
Alexander Vitkovski
alev_biz

Category:

Человеческие гены оказалось сложно исправлять

Метод редактирования генома под названием CRISPR (или CRISPR/Cas), появившись всего несколько лет назад, быстро набрал популярность среди специалистов по генной инженерии. Изначально его открыли как бактериальную систему противовирусной защиты.

Человеческие гены оказалось сложно исправлять

Бактерии держат у себя в геноме куски вирусных генов (эти последовательности в бактериальной хромосоме называются CRISPR), и, когда в клетке появляется чужая ДНК, специальные ферменты (белки семейства Cas) сравнивают ее с вирусными образцами – и если сходство есть, чужеродную ДНК разрезают и отправляют в утиль.



Биотехнологи в какой-то момент сообразили, как можно использовать эту систему для своих нужд. Белки бактерий, с помощью которых те уничтожают ДНК вирусов, приспособили для работы в клетках животных. По сути, принцип работы остался тем же: белок ищет в клеточных хромосомах участок, который нужно вырезать, а в качестве «путеводителя» ферменту дают молекулу РНК с той же последовательностью нуклеотидов, что и в нужном участке. Сверяя РНК, которую он носит с собой, с клеточной ДНК, фермент в конце концов находит нужное место в геноме, и вырезает его. Если здесь была мутация, она исчезнет – клеточные системы ремонта ДНК сами заделают образовавшуюся дыру так, что никакой мутации тут уже не будет.

Человеческие гены оказалось сложно исправлять
Структура бактериального белка Cas из противовирусной системы CRISPR-Cas; оранжевым обозначена ДНК, с которой связался редактирующий фермент

Еще раз скажем, что это очень упрощенное описание того, как работает геномный редактор CRISPR. Сейчас он существует уже в нескольких вариантах, с разными белками, которые режут ДНК так или этак. Но в любом случае понятно, сколь огромные перспективы открываются тут для биоинженерии и медицины: огромное число болезней развиваются из-за дефектов в нашей ДНК, так что инструмент, который позволял бы такие дефекты устранять, был бы очень кстати. Конечно, в генной инженерии и до того были методы, позволявшие редактировать ДНК, но – и это важно – по точности система CRISPR/Cas их сильно превосходит.

Однако насчет точности оказалось, что все не так просто – совсем недавно мы писали о том, что метод CRISPR вносит в геном множество непредсказуемых мутаций. А сейчас в Nature Medicine вышла еще одна статья на ту же тему. Дэвид Скотт (David Scott) и Фэн Чжан (Feng Zhang, один из тех, кто первым придумал приспособить бактериальный CRISPR/Cas к биотехнологической практике) из Института Броуда пришли к выводу, что метод редактирования CRISPR пока что мало подходит для работы с человеческими генами, потому что человеческие гены оказались слишком разнообразными.

Проблема в том, что один и тот же ген у разных людей может отличаться. Как мы знаем, ДНК – это последовательность четырех разных молекул нуклеотидов, четырех букв генетического кода. В силу разных причин одна из букв может поменяться на другую, без всякого вредя для гена и клетки. Такие однонуклеотидные замены происходят постоянно, и в результате один и тот же ген у двух разных людей кодирует вполне здоровый, функциональный фермент, но последовательность самого гена отличается на одну, две, три, несколько букв. И если взять достаточно большую группу людей и проанализировать их геномы на предмет какого-нибудь гена, мы найдем массу вариантов в его последовательности; для этого есть специальное название – однонуклеотидный полиморфизм.

А теперь вспомним, что система редактирования генома ищет то место, которое надо отредактировать, с помощью специального шаблона (или гида) – молекулы РНК. Ее синтезируют так, чтобы ее последовательность совпадала с последовательностью в ДНК, куда нужно внести разрыв. Но молекулу-шаблон делают довольно короткой, она узнает лишь небольшой кусочек редактируемого гена. А ведь чем короче последовательность нуклеотидов, тем больше вероятность того, что точно такая же последовательность встретится не только в нужном гене, но и где-нибудь еще. Учитывая богатство однонуклеотидных замен в человеческом геноме, кажется вполне вероятным, что именно так и случится: машина CRISPR/Cas приплывет к совершенно постороннему гену, который из-за однонуклеотидной замены стал похож на тот, который должен был служить настоящей целью.

Впервые о том, что разнообразие генов может ввести CRISPR/Cas в заблуждение, заговорили еще три года назад, но сейчас удалось количественно оценить масштаб проблемы. Дэвид Скотт и Фэн Чжан смоделировали РНК-шаблоны для двенадцати генов, которые имеют отношение к целому ряду болезней. Затем, чтобы понять, на что еще могут сесть эти шаблоны, авторы работы воспользовались полногеномными последовательностями из генетических баз данных, собирающих информацию о разнообразии человеческого генома.

В некоторых случаях РНК-шаблон редактирующего белка оказывался действительно очень точным – то есть он связывался только с тем геном, для которого его и синтезировали. Но в других случаях число ошибок доходило до 10 000 – именно столько точек в геноме, помимо нужной, могла бы отредактировать машина CRISPR/Cas. Причем в данном случае речь идет не о мусорной ДНК, которая ничего не кодирует, а именно о генах, кодирующих белки.

Но метод CRISPR/Cas все-таки кажется слишком удобным, чтобы от него можно было просто взять и отказаться, и, скорее всего, биотехнологи сделают все возможное, чтобы повысить его точность. И здесь, во-первых, можно более тщательно моделировать последовательность РНК-шаблона; сами Скотт и Чжан предложили свой алгоритм, позволяющий повысить точность редактирующей системы.

Во-вторых, собираясь применить редактирование генома к какому-нибудь больному, следует прочитать его геном полностью, и уже с полногеномной картой на руках, зная все его однонуклеотидные замены, подбирать последовательность для молекулы РНК, которая приведет редактирующий белок именно к нужному гену. Впрочем, на человеке CRISPR/Cas будут испытывать еще не скоро – слишком многое еще нужно испытать на молекулах, клетках и животных.

Автор: Кирилл Стасевич





Ссылка на источник

Tags: ДНК, РНК, биотехнология, генная инженерия, геном, исследования, наука
Subscribe

Posts from This Journal “генная инженерия” Tag

Buy for 20 tokens
Что изучает социальная антропология? Почему противопоставление «природы» и «культуры», считавшееся базовым со времен Клода Леви-Стросса, перестало работать? В каком смысле люди всю жизнь играют самих себя, как человеку в повседневной жизни помогают фантомные объекты и почему с точки зрения…
  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

  • 0 comments