Alexander Vitkovski (alev_biz) wrote,
Alexander Vitkovski
alev_biz

Categories:

Взрывающиеся от ультразвука микропузырьки воздуха помогли «увидеть» экспрессию генов в клетках

В арсенале ученых до недавнего времени было не так уж много средств прямого наблюдения за работой отдельных генов в клетках.

Взрывающиеся от ультразвука микропузырьки воздуха помогли «увидеть» экспрессию генов в клетках
Три изображения бактерий кишечной палочки E. coli Nissle: контрольное (получено с помощью просвечивающего электронного микроскопа), полученное с помощью BURST и BURST+ (разная мощность ультразвука). На первом изображении видны везикулы (микропузырьки воздуха) — светлые области внутри клетки.

Самый простой из них — добавка к целевому фрагменту ДНК нескольких элементов, кодирующих флюоресцентный белок. Но несколько лет назад американские ученые приспособили для этой задачи ультразвук и пузырьки воздуха. Теперь технологию удалось усовершенствовать и приблизить к использованию на практике.



Идея «помечать» работу целевых генов сопутствующими им флюоресцентными белками всем хороша, кроме одного: свет не может проходить вглубь тканей. Пока биологам нужно следить за процессами внутри бактерий или простых организмов, это работает. Но как только дело доходит хотя бы до земноводных, не говоря уже о млекопитающих, начинаются принципиальные трудности.

Специалисты из лаборатории Михаила Шапиро (Mikhail G. Shapiro) в Калифорнийском технологическом институте (США) разработали альтернативный способ отслеживать экспрессию генов в клетках животных. Он основан на резонансе микроскопических пузырьков воздуха при воздействии на них ультразвука. В прошлом году они смогли усовершенствовать свою методику, и теперь с ее помощью можно наблюдать процессы, протекающие в отдельных клетках организма. Результаты этих изысканий опубликованы в журнале Nature Methods.

По большому счету технология не так сильно отличается от ранее применявшейся — по крайней мере, принципиально. Рядом с целевым фрагментом ДНК встраивается комбинация нуклеотидов, кодирующая несколько белков. При их экспрессии в клетке вырастают структуры, называемые везикулами или микропузырьками. В природе они встречаются у некоторых бактерий, которые используют их для сохранения плавучести на воде.

Иными словами, пока все ровно так же, как с биолюминесценцией. Берем готовое решение у природы, главное — чтобы оно кодировалось как можно меньшим количеством генов. Затем интегрируем его в подопытные клетки так, чтобы этот кусочек ДНК точно кодировался вместе с целевым. А когда нужно наблюдать экспрессию изучаемых генов, просто воздействуем на клетку чем-нибудь, что вызывает ответ от белков, которые кодируют встроенные нами комбинации нуклеотидов. Такие гены-метки называются репортерными.

В случае со светящимися белками их достаточно подвергнуть действию излучения с определенной длиной волны. Как правило, синим цветом, если используется кодирующий зеленый флуоресцентный белок (GFP) ген медузы Aequorea victoria. Но, как известно, электромагнитное излучение в видимом диапазоне плохо проходит через плотные ткани. А то, что делает хорошо, обычно имеет различные неприятные эффекты. Идея команды Шапиро — в том, чтобы использовать ультразвук.

Звуковые волны отлично проходят сквозь ткани, что широко используется для диагностики в медицине. Однако разрешающая способность даже самых продвинутых аппаратов УЗИ и близко не позволяет разглядеть отдельные клетки. Для этого ученые предложили добавить в них некий контраст по аналогии с GFP. В случае ультразвука им понадобились микроскопические структуры, которые резонируют на частоте работы прибора. Первая итерация технологии позволяла увидеть скопления клеток и даже проследить экспрессию генов в тканях в целом. Но разрешение все равно оставляло желать лучшего.

Усовершенствованная технология получила название BURST (дословно — «взрыв» или «лопаться»). В ней по-прежнему используют звуковые репортерные гены (ARG), как и раньше. Только их задача не просто присутствовать в клетке, а лопаться под воздействием ультразвука определенной частоты и мощности. При схлопывании микропузырьков раздается более громкий звук, хорошо различимый на фоне шума. В результате разрешающую способность такой томографии удалось поднять в тысячу раз по сравнению с первоначальной разработкой.

Для демонстрации работоспособности новой методики ученые проверили ее на колониях бактерий в чашке Петри, а также в печени и желудочно-кишечном тракте мыши. Использование BURST позволяет не только отслеживать экспрессию генов в отдельных клетках в реальном времени. С ее помощью можно наблюдать перемещение специально подготовленных бактерий по организму животного. Они, например, способны доставлять лекарства или отдельные белки к опухолям и очагам заболеваний.

Что интересно, при разрыве микропузырьков под действием ультразвука ткани почти не повреждаются. Могут пострадать некоторые клетки, но лишь незначительная их доля от общего количества. Для отдельных бактерий это может быть опасно, однако даже их колониям, а уж тем более тканям сложных организмов, никакого вреда BURST наносить не должен. Тем не менее до использования технологии на людях еще далеко. Зато в лабораторных исследованиях ученые смогут ее применять в обозримом будущем.

Автор: Василий Парфенов





Ссылка на источник

Tags: биология, биотехнология, генетика, генная инженерия, инструменты и методы, медицина
Subscribe

Posts from This Journal “биотехнология” Tag

promo nemihail 16:00, saturday 45
Buy for 20 tokens
Удивительно, но порой даже коренные москвичи этого не знают, да чего греха таить, даже я до этого года об этом не знал. (фото: Яндекс Картинки, кадр из к/ф Во все тяжкие) С начала года я нашел инвестиционную нишу, в которую залез с головой. Это не системная история, это просто ниша на…
  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic

    Your IP address will be recorded 

  • 1 comment